Modality-Specific Axonal Regeneration: Toward Selective Regenerative Neural Interfaces
نویسندگان
چکیده
Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed sub-modality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF) and neurotrophin-3 (NT-3), to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5-fold compared to that in saline or NT-3, whereas the number of branches increased threefold in the NT-3 channels. These results were confirmed using a 3D "Y"-shaped in vitro assay showing that the arm containing NGF was able to entice a fivefold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a "Y"-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted toward the sural nerve, while N-52+ large-diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.
منابع مشابه
Role of Glial Cells in Axonal Regeneration
Axonal regeneration is critical for functional recovery following neural injury. In addition to intrinsic differences between regenerative responses of axons in peripheral versus central nervous systems, environmental factors such as glial cells and related molecules in the extracellular matrix (ECM) play an important role in axonal regeneration. Schwann cells in the peripheral nervous system (...
متن کاملInfluence of macrophages and lymphocytes on the survival and axon regeneration of injured retinal ganglion cells in rats from different autoimmune backgrounds.
The immune response after neural injury influences the survival and regenerative capacity of neurons. In the primary visual pathway, previous studies have described beneficial effects of macrophages and T-cells in promoting neural survival and axonal regeneration in some rat strains. However, the contributions of specific cell populations to these responses have been unclear. In adult Fischer (...
متن کاملRestoring nervous system structure and function using tissue engineered living scaffolds
Neural tissue engineering is premised on the integration of engineered living tissue with the host nervous system to directly restore lost function or to augment regenerative capacity following nervous system injury or neurodegenerative disease. Disconnection of axon pathways - the long-distance fibers connecting specialized regions of the central nervous system or relaying peripheral signals -...
متن کاملRoles of channels and receptors in the growth cone during PNS axonal regeneration.
Neurons in the peripheral nervous system (PNS) are known to maintain a regenerative capacity and will normally regenerate their axons within a permissive growth environment. The success of regeneration in the PNS largely depends on maintenance of the supportive basal lamina membrane, efficient removal of axonal and myelin debris by macrophages and Schwann cells, expression of neurotrophic facto...
متن کاملBiocompatability of carbon nanotubes with stem cells to treat CNS injuries
Cases reporting traumatic injuries to the brain and spinal cord are extended range of disorders that affect a large percentage of the world's population. But, there are only few effective treatments available for central nervous system (CNS) injuries because the CNS is refractory to axonal regeneration and relatively inaccessible to many pharmacological treatments. The use of stem cell therapy ...
متن کامل